If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-108X+324=0
a = 1; b = -108; c = +324;
Δ = b2-4ac
Δ = -1082-4·1·324
Δ = 10368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10368}=\sqrt{5184*2}=\sqrt{5184}*\sqrt{2}=72\sqrt{2}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-108)-72\sqrt{2}}{2*1}=\frac{108-72\sqrt{2}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-108)+72\sqrt{2}}{2*1}=\frac{108+72\sqrt{2}}{2} $
| 2-5x=3-2(4-×) | | 14x+37=13x+8 | | X+10=2x+10=3x-10 | | 4x-10=3x-11 | | 8j-6=18 | | 56=-2(w+-77) | | 16x-8=10x+28 | | -9(d+40)=27 | | -25+5h=-85 | | 10t-17=33 | | -8(f+20)=48 | | 3=41-2f | | 13=23-2j | | 9(c-89)=99 | | t/7+48=54 | | 1=7x=8 | | 2/n=5/29 | | 8x+-7=X+16 | | 4n/5-3/2=2/3+(1/3)n | | 11-2(5+3n)=2(n-6)+14 | | 4c=3+4 | | 1-x=240 | | 3x+x3+72=180 | | 1/4x+1/7=10/3-3/4x+10/3 | | –5g(3g+1)=0 | | 32x-52=65 | | 2(u+5)=-5(2u-4)+8u | | 2(w-2)=8w+4-2(-3w-1) | | 5y-9+3(2y+6)=-7(y+1) | | 5=5-1n+n | | -3n+1n+1=-1 | | 4(w-3)-4=-3(-4w+2)-4w |